Photoadaptation in Neurospora by Competitive Interaction of Activating and Inhibitory LOV Domains
نویسندگان
چکیده
Light responses and photoadaptation of Neurospora depend on the photosensory light-oxygen-voltage (LOV) domains of the circadian transcription factor White Collar Complex (WCC) and its negative regulator VIVID (VVD). We found that light triggers LOV-mediated dimerization of the WCC. The activated WCC induces expression of VVD, which then disrupts and inactivates the WCC homodimers by the competitive formation of WCC-VVD heterodimers, leading to photoadaptation. During the day, expression levels of VVD correlate with light intensity, allowing photoadaptation over several orders of magnitude. At night, previously synthesized VVD serves as a molecular memory of the brightness of the preceding day and suppresses responses to light cues of lower intensity. We show that VVD is essential to discriminate between day and night, even in naturally ambiguous photoperiods with moonlight.
منابع مشابه
Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora.
Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects p...
متن کاملBiological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity
Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of photoadaptation, the attenuation of light-induc...
متن کاملAlteration of Light-Dependent Gene Regulation by the Absence of the RCO-1/RCM-1 Repressor Complex in the Fungus Neurospora crassa
The activation of transcription by light in the fungus Neurospora crassa requires the White Collar Complex (WCC), a photoreceptor and transcription factor complex. After light reception two WCCs interact and bind the promoters of light-regulated genes to activate transcription. This process is regulated by VVD, a small photoreceptor that disrupts the interaction between WCCs and leads to a redu...
متن کاملStructure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction.
Phototropin, a major blue-light receptor for phototropism in seed plants, exhibits blue-light-dependent autophosphorylation and contains two light, oxygen, or voltage (LOV) domains and a serine/threonine kinase domain. The LOV domains share homology with the PER-ARNT-SIM (PAS) superfamily, a diverse group of sensor proteins. Each LOV domain noncovalently binds a single FMN molecule and exhibits...
متن کاملStructure of a light-activated LOV protein dimer that regulates transcription.
Light, oxygen, or voltage (LOV) protein domains are present in many signaling proteins in bacteria, archaea, protists, plants, and fungi. The LOV protein VIVID (VVD) of the filamentous fungus Neurospora crassa enables the organism to adapt to constant or increasing amounts of light and facilitates proper entrainment of circadian rhythms. Here, we determined the crystal structure of the fully li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 142 شماره
صفحات -
تاریخ انتشار 2010